# Non-Uniform Complexity 

## A. Antonopoulos

## Theoretical Computer Science I

Computation and Reasoning Laboratory
National Technical University of Athens

January 2012

## Boolean Circuits

- A Boolean Circuit is a natural model of nonuniform computation, a generalization of hardware computational methods.
- A non-uniform computational model allows us to use a different "algorithm" to be used for every input size, in contrast to the standard (or uniform) Turing Machine model, where the same T.M. is used on (infinitely many) input sizes.
- Each circuit can be used for a fixed input size, which limits or model.


## Definition (Boolean circuits)

For every $n \in \mathbb{N}$ an $n$-input, single output Boolean Circuit $C$ is a directed acyclic graph with $n$ sources and one sink.

- All nonsource vertices are called gates and are labeled with one of $\wedge$ (and), $\vee$ (or) or $\neg$ (not).
- The vertices labeled with $\wedge$ and $\vee$ have fan-in (i.e. number or incoming edges) 2.
- The vertices labeled with $\neg$ have fan-in 1 .
- The size of $C$, denoted by $|C|$, is the number of vertices in it.
- For every vertex $v$ of $C$, we assign a value as follows: for some input $x \in\{0,1\}^{n}$, if $v$ is the $i$-th input vertex then $\operatorname{val}(v)=x_{i}$, and otherwise $v a l(v)$ is defined recursively by applying $v$ 's logical operation on the values of the vertices connected to $v$.
- The output $C(x)$ is the value of the output vertex.
- The depth of $C$ is the length of the longest directed path from an input node to the output node.
- To overcome the fixed input length size, we need to allow families (or sequences) of circuits to be used:


## Definition

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A $T(n)$-size circuit family is a sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ of Boolean circuits, where $C_{n}$ has $n$ inputs and a single output, and its size $\left|C_{n}\right| \leq T(n)$ for every $n$.

- These infinite families of circuits are defined arbitrarily: There is no pre-defined connection between the circuits, and also we haven't any "guarantee" that we can construct them efficiently.
- Like each new computational model, we can define a complexity class on it by imposing some restriction on a complexity measure:


## Definition

We say that a language $L$ is in $\operatorname{SIZE}(T(n))$ if there is a $T(n)$-size circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$, such that $\forall x \in\{0,1\}^{n}$ :

$$
x \in L \Leftrightarrow C_{n}(x)=1
$$

## Definition

$\mathbf{P}$ /poly is the class of languages that are decidable by polynomial size circuits families. That is,

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c \in \mathbb{N}} \operatorname{SIZE}\left(n^{c}\right)
$$

## Theorem (Nonuniform Hierarchy Theorem)

For every functions $T, T^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ with $\frac{2^{n}}{n}>T^{\prime}(n)>10 T(n)>n$, $\operatorname{SIZE}(T(n)) \subsetneq \operatorname{SIZE}\left(T^{\prime}(n)\right)$

## Turing Machines that take advice

## Definition

Let $T, \alpha: \mathbb{N} \rightarrow \mathbb{N}$. The class of languages decidable by $T(n)$-time Turing Machines with $a(n)$ bits of advice, denoted

$$
\text { DTIME }(T(n) / a(n))
$$

containts every language $L$ such that there exists a secuence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of strings, with $a_{n} \in\{0,1\}^{a(n)}$ and a Turing Machine $M$ satisfying:

$$
x \in L \Leftrightarrow M\left(x, a_{n}\right)=1
$$

for every $x \in\{0,1\}^{n}$, where on input $\left(x, a_{n}\right)$ the machine $M$ runs for at most $\mathcal{O}(T(n))$ steps.

## Definition

## Turing Machines that take advice

Theorem (Alternative Definition of $P_{/ \text {poly }}$ )

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

## Turing Machines that take advice

Theorem (Alternative Definition of $P_{/ \text {poly }}$ )

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

Proof: ( $\subseteq$ ) Let $L \in \mathbf{P}_{/ \text {poly }}$. Then, $\exists\left\{C_{n}\right\}_{n \in \mathbb{N}}: C_{|x|}=L(x)$. We can use $C_{n}$ 's encoding as an advice string for each $n$.

## Turing Machines that take advice

## Theorem (Alternative Definition of $P_{/ \text {poly }}$ )

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

Proof: ( $\subseteq$ ) Let $L \in \mathbf{P}_{\text {/poly }}$. Then, $\exists\left\{C_{n}\right\}_{n \in \mathbb{N}}: C_{|x|}=L(x)$. We can use $C_{n}$ 's encoding as an advice string for each $n$. $(\supseteq)$ Let $L \in \operatorname{DTIME}\left(n^{c}\right) / n^{d}$. Then, since CVP is P-complete, we construct for every $n$ a circuit $D_{n}$ such that, for $x \in\{0,1\}^{n}, a_{n} \in\{0,1\}^{a(n)}$ :

$$
D_{n}\left(x, a_{n}\right)=M\left(x, a_{n}\right)
$$

Then, let $C_{n}(x)=D_{n}\left(x, a_{n}\right)$ (We hard-wire the advice string!) Since $a(n)=n^{d}$, the circuits have polynomial size. $\square$.

## Theorem

## $\mathbf{P} \nsubseteq \mathbf{P}_{/ \text {poly }}$

- For " $\subseteq$ ", recall that CVP is $\mathbf{P}$-complete.
- But why proper inclusion?
- Consider the following language:
$\mathrm{U}=\left\{1^{n} \mid n\right.$ 's binary expression encodes a pair $<M, x>$ s.t. $\left.M(x) \downarrow\right\}$
- It is easy to see that $U \in \mathbf{P} /$ poly, but....


## Theorem (Karp-Lipton Theorem)

$$
\text { If } \mathbf{N P} \subseteq \mathbf{P}_{/ \text {poly }}, \text { then } \mathbf{P H}=\Sigma_{2}^{p} .
$$

## Theorem (Meyer's Theorem)

If $\mathbf{E X P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{E X P}=\Sigma_{2}^{p}$.

## Uniform Families of Circuits

- We saw that $\mathbf{P}_{\text {/poly }}$ contains an undecidable language.
- The root of this problem lies in the "weak" definition of such families, since it suffices that $\exists$ a circuit family for $L$.
- We haven't a way (or an algorithm) to construct such a family.
- So, may be useful to restric or attention to families we can construct efficiently:


## Theorem (P-Uniform Families)

A circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ is $\mathbf{P}$-uniform if there is a polynomial-time T.M. that on input $1^{n}$ outputs the description of the circuit $C_{n}$.

- But...


## Theorem

A language $L$ is computable by a $\mathbf{P}$-uniform circuit family iff $L \in \mathbf{P}$.

## Theorem

## $B P P \subset P_{/ \text {poly }}$

Proof: Recall that if $L \in \mathbf{B P P}$, then $\exists$ PTM $M$ such that:

$$
\operatorname{Pr}_{r \in\{0,1\}^{\text {poly }(n)}}[M(x, r) \neq L(x)]<2^{-n}
$$

Then, taking the union bound:

$$
\begin{aligned}
\operatorname{Pr}[\exists x & \left.\in\{0,1\}^{n}: M(x, r) \neq L(x)\right]=\operatorname{Pr}\left[\bigcup_{x \in\{0,1\}^{n}} M(x, r) \neq L(x)\right] \leq \\
& \leq \sum_{x \in\{0,1\}^{n}} \operatorname{Pr}[M(x, r) \neq L(x)]<2^{-n}+\cdots+2^{-n}=1
\end{aligned}
$$

So, $\exists r_{n} \in\{0,1\}^{\text {poly( } n)}$, s.t. $\forall x\{0,1\}^{n}: M(x, r)=L(x)$.
Using $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ as advice string, we have the non-uniform machine.

## Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we define the (circuit) complexity of $f$ as the size of the smallest Boolean Circuit computing $f$ (that is, $C(x)=f(x), \forall x \in\{0,1\}^{n}$ ).

## Definition (Average-Case Hardness)

The minimum $S$ such that there is a circuit $C$ of size $S$ such that:

$$
\operatorname{Pr}[C(x)=f(x)] \geq \frac{1}{2}+\frac{1}{S}
$$

is called the (average-case) hardness of $f$.

## Hierarchies for Semantic Classes with advice

- We have argued why we can't obtain Hierarchies for semantic measures using classical diagonalization techniques. But using small advice we can have the following results:


## Theorem ([Bar02], [GST04])

For $a, b \in \mathbb{R}$, with $1 \leq a<b$ :

$$
\operatorname{BPTIME}\left(n^{a}\right) / 1 \varsubsetneqq \operatorname{BPTIME}\left(n^{b}\right) / 1
$$

## Theorem ([FST05])

For any $1 \leq a \in \mathbb{R}$ there is a real $b>$ a such that:
$\operatorname{RTIME}\left(n^{b}\right) / 1 \subsetneq \operatorname{RTIME}\left(n^{a}\right) / \log (n)^{1 / 2 a}$

## Circuit Lower Bounds

- The significance of proving lower bounds for this computational model is related to the famous " $\mathbf{P}$ vs NP" problem, since:

$$
\mathbf{N P} \backslash \mathbf{P} / \text { poly } \neq \emptyset \Rightarrow \mathbf{P} \neq \mathbf{N P}
$$

- But...after decades of efforts, The best lower bound for an NP language is $5 n-o(n)$, proved very recently (2005).
- There are better lower bounds for some special cases, i.e. some restricted classes of circuits, such as: bounded depth circuits, monotone circuits, and bounded depth circuits with "counting" gates.


## Definition

Let PAR: $\{0,1\}^{n} \rightarrow\{0,1\}$ be the parity function, which outputs the modulo 2 sum of an $n$-bit input. That is:

$$
\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right) \equiv \sum_{i=1}^{n} x_{i}(\bmod 2)
$$

## Theorem

For all constant d, PAR has no polynomial-size circuit of depth $d$.

- The above result (improved by Håstad and Yao) gives a relatively tight lower bound of $\exp \left(\Omega\left(n^{1 /(d-1)}\right)\right)$, on the size of $n$-input PAR circuits of depth $d$.


## Definition

For $x, y \in\{0,1\}^{n}$, we denote $x \preceq y$ if every bit that is 1 in $x$ is also 1 in $y$. A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if $f(x) \leq f(y)$ for every $x \preceq y$.

## Definition

A Boolean Circuit is monotone if it contains only AND and OR gates, and no NOT gates. Such a circuit can only compute monotone functions.

## Theorem (Monotone Circuit Lower Bound for CLIQUE)

Denote by $C L I Q U E_{k, n}:\{0,1\}\binom{n}{2} \rightarrow\{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph $G$ outputs 1 iff $G$ contains an $k$-clique. There exists some constant $\epsilon>0$ such that for every $k \leq n^{1 / 4}$, there is no monotone circuit of size less than $2^{\epsilon \sqrt{k}}$ that computes CLIQUE $k, n$.

- So, we proved a significant lower bound $\left(2^{\Omega\left(n^{1 / 8}\right)}\right)$
- The significance of the above theorem lies on the fact that there was some alleged connection between monotone and non-monotone circuit complexity (e.g. that they would be polynomially related). Unfortunately, Éva Tardos proved in 1988 that the gap between the two complexities is exponential.
- Where is the problem finally?

Today, we know that a result for a lower bound using such techniques would imply the inversion of strong one-way functions:

## *Natural Proofs [Razborov, Rudich 1994]

## Definition

Let $\mathcal{P}$ be the predicate:
"A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ doesn't have $n^{c}$-sized circuits for some $c \geq 1$."
$\mathcal{P}(f)=0, \forall f \in \operatorname{SIZE}\left(n^{c}\right)$ for a $c \geq 1$. We call this $n^{c}$-usefulness.

A predicate $\mathcal{P}$ is natural if:

- There is an algorithm $M \in \mathbf{E}$ such that for a function

$$
g:\{0,1\}^{n} \rightarrow\{0,1\}: M(g)=\mathcal{P}(g)
$$

- For a random function $g: \operatorname{Pr}[\mathcal{P}(g)=1] \geq \frac{1}{n}$


## Theorem

If strong one-way functions exist, then there exists a constant $c \in \mathbb{N}$ such that there is no $n^{c}$-useful natural predicate $\mathcal{P}$.

## References

- Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009
- Ding-Zhu Du and Ker-I Ko, Theory of Computational Complexity, Wiley-Interscience, 2000
- Oded Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press, 1st edition, 2008
- *Ingo Wegener, The Complexity of Boolean Functions, John Wiley and Sons Ltd, and B. G. Teubner, Stuttgart, 1987
- Lance Fortnow, Rahul Santhanam, Time Hierarchies: A Survey, Electronic Colloquium on Computational Complexity, 2007 http://eccc.hpi-web.de/report/2007/004/


## Thank You!

