Boolean Circuits 0000	TMs taking advice 00	Basic Properties	The Quest for Lower Bounds

Non-Uniform Complexity

A. Antonopoulos

Theoretical Computer Science I

Computation and Reasoning Laboratory National Technical University of Athens

January 2012

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Boolean Circuits ●000	TMs taking advice	Basic Properties 00000	The Quest for Lower Bounds
Definitions			
Roolean Ci	cuite		

- A Boolean Circuit is a natural model of *nonuniform* computation, a generalization of hardware computational methods.
- A <u>non-uniform</u> computational model allows us to use a different "algorithm" to be used for every input size, in contrast to the standard (or *uniform*) Turing Machine model, where the same T.M. is used on (infinitely many) input sizes.
- Each circuit can be used for a <u>fixed</u> input size, which limits or model.

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000			
Definitions			

Definition (Boolean circuits)

For every $n \in \mathbb{N}$ an *n*-input, single output Boolean Circuit *C* is a directed acyclic graph with *n* sources and *one* sink.

- All nonsource vertices are called *gates* and are labeled with one of ∧ (and), ∨ (or) or ¬ (not).
- The vertices labeled with ∧ and ∨ have *fan-in* (i.e. number or incoming edges) 2.
- The vertices labeled with \neg have *fan-in* 1.
- The size of C, denoted by |C|, is the number of vertices in it.
- For every vertex v of C, we assign a value as follows: for some input x ∈ {0,1}ⁿ, if v is the *i*-th input vertex then val(v) = x_i, and otherwise val(v) is defined recursively by applying v's logical operation on the values of the vertices connected to v.
- The output C(x) is the value of the output vertex.
- The *depth* of *C* is the length of the longest directed path from an input node to the output node.

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000			
Definitions			

• To overcome the fixed input length size, we need to allow families (or sequences) of circuits to be used:

Definition

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A T(n)-size circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ of Boolean circuits, where C_n has n inputs and a single output, and its size $|C_n| \leq T(n)$ for every n.

- These infinite families of circuits are defined arbitrarily: There is **no** pre-defined connection between the circuits, and also we haven't any "guarantee" that we can construct them efficiently.
- Like each new computational model, we can define a complexity class on it by imposing some restriction on a *complexity measure*:

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000	00	00000	000000
Definitions			

Definition

We say that a language L is in **SIZE**(T(n)) if there is a T(n)-size circuit family $\{C_n\}_{n\in\mathbb{N}}$, such that $\forall x \in \{0,1\}^n$:

$$x \in L \Leftrightarrow C_n(x) = 1$$

Definition

 $\mathbf{P}_{/\text{poly}}$ is the class of languages that are decidable by polynomial size circuits families. That is,

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c \in \mathbb{N}} \mathsf{SIZE}(n^c)$$

Theorem (Nonuniform Hierarchy Theorem)

For every functions $T, T' : \mathbb{N} \to \mathbb{N}$ with $\frac{2^n}{n} > T'(n) > 10 T(n) > n$,

 $SIZE(T(n)) \subsetneq SIZE(T'(n))$

Boolean Circuits 0000	TMs taking advice	Basic Properties 00000	The Quest for Lower Bounds
Definition			

Definition

Let $T, \alpha : \mathbb{N} \to \mathbb{N}$. The class of languages decidable by T(n)-time Turing Machines with a(n) bits of advice, denoted

DTIME (T(n)/a(n))

containts every language *L* such that there exists a secuence $\{a_n\}_{n\in\mathbb{N}}$ of strings, with $a_n \in \{0,1\}^{a(n)}$ and a Turing Machine *M* satisfying:

$$x \in L \Leftrightarrow M(x, a_n) = 1$$

for every $x \in \{0,1\}^n$, where on input (x, a_n) the machine M runs for at most $\mathcal{O}(\mathcal{T}(n))$ steps.

Boolean Circuits 0000	TMs taking advice ⊙●	Basic Properties 00000	The Quest for Lower Bounds
Definition			

Theorem (Alternative Definition of $P_{/poly}$)

$$\mathbf{P}_{/\mathsf{poly}} = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c/n^d)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000	⊙●	00000	
Definition			

Theorem (Alternative Definition of $P_{/poly}$)

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c/n^d)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof: (\subseteq) Let $L \in \mathbf{P}_{/\text{poly}}$. Then, $\exists \{C_n\}_{n \in \mathbb{N}} : C_{|x|} = L(x)$. We can use C_n 's encoding as an advice string for each n.

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000	⊙●	00000	
Definition			

Theorem (Alternative Definition of $P_{/poly}$)

$$\mathbf{P}_{/\mathsf{poly}} = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c/n^d)$$

Proof: (\subseteq) Let $L \in \mathbf{P}_{/\mathbf{poly}}$. Then, $\exists \{C_n\}_{n \in \mathbb{N}} : C_{|x|} = L(x)$. We can use C_n 's encoding as an advice string for each n. (\supseteq) Let $L \in \mathbf{DTIME}(n^c)/n^d$. Then, since CVP is **P**-complete, we construct for every n a circuit D_n such that, for $x \in \{0,1\}^n$, $a_n \in \{0,1\}^{a(n)}$:

$$D_n(x,a_n)=M(x,a_n)$$

Then, let $C_n(x) = D_n(x, a_n)$ (We hard-wire the advice string!) Since $a(n) = n^d$, the circuits have polynomial size. \Box .

- For " \subseteq ", recall that CVP is **P**-complete.
- But why proper inclusion?
- Consider the following language:

 $U = \{1^n | n \text{ 's binary expression encodes a pair } < M, x > s.t. M(x) \downarrow\}$

 $\bullet\,$ It is easy to see that $\mathtt{U}\in \mathbf{P}_{/\text{poly}},\,\mathtt{but}....$

Theorem (Karp-Lipton Theorem)

If $\mathsf{NP} \subseteq \mathsf{P}_{/\mathsf{poly}}$, then $\mathsf{PH} = \Sigma_2^p$.

Theorem (Meyer's Theorem)

If $\mathsf{EXP} \subseteq \mathsf{P}_{/\mathsf{poly}}$, then $\mathsf{EXP} = \Sigma_2^p$.

Boolean Circuits 0000	TMs taking advice	Basic Properties 0●000	The Quest for Lower Bounds			
Relationship among Complexity Classes						
Uniform Fa	milies of Circuits	s				

- \bullet We saw that $\mathbf{P}_{/\text{poly}}$ contains an undecidable language.
- The root of this problem lies in the "weak" definition of such families, since it suffices that ∃ a circuit family for *L*.
- We haven't a way (or an algorithm) to construct such a family.
- So, may be useful to restric or attention to families we can construct efficiently:

Theorem (P-Uniform Families)

A circuit family $\{C_n\}_{n\in\mathbb{N}}$ is **P**-uniform if there is a polynomial-time T.M. that on input 1^n outputs the description of the circuit C_n .

• But...

Theorem

A language L is computable by a **P**-uniform circuit family iff $L \in \mathbf{P}$.

Proof: Recall that if $L \in \mathbf{BPP}$, then \exists PTM *M* such that:

$$\mathsf{Pr}_{r \in \{0,1\}^{poly(n)}}\left[M(x,r) \neq L(x)
ight] < 2^{-n}$$

Then, taking the union bound:

$$\Pr\left[\exists x \in \{0,1\}^n : M(x,r) \neq L(x)\right] = \Pr\left[\bigcup_{x \in \{0,1\}^n} M(x,r) \neq L(x)\right] \leq$$

$$\leq \sum_{x \in \{0,1\}^n} \Pr\left[M(x,r) \neq L(x)\right] < 2^{-n} + \dots + 2^{-n} = 1$$

So, $\exists r_n \in \{0,1\}^{poly(n)}$, s.t. $\forall x \{0,1\}^n$: M(x,r) = L(x). Using $\{r_n\}_{n \in \mathbb{N}}$ as advice string, we have the non-uniform machine.

(a)

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds	
0000	00	00000	000000	
Relationship among Complexity Classes				

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function $f : \{0,1\}^n \to \{0,1\}$, we define the (circuit) *complexity* of f as the size of the smallest Boolean Circuit computing f (that is, $C(x) = f(x), \forall x \in \{0,1\}^n$).

Definition (Average-Case Hardness)

The minimum S such that there is a circuit C of size S such that:

$$\Pr[C(x) = f(x)] \ge \frac{1}{2} + \frac{1}{5}$$

is called the (average-case) hardness of f.

Boolean Circuits 0000	TMs taking advice	Basic Properties 0000●	The Quest for Lower Bounds
Relationship among Complexity	Classes		
Hierarchies for	Semantic Class	ses with advice	

• We have argued why we can't obtain Hierarchies for semantic measures using classical diagonalization techniques. But using small advice we can have the following results:

Theorem ([Bar02], [GST04])

For $a, b \in \mathbb{R}$, with $1 \leq a < b$:

```
\mathsf{BPTIME}(n^a)/1 \subsetneq \mathsf{BPTIME}(n^b)/1
```

Theorem ([FST05])

For any $1 \leq a \in \mathbb{R}$ there is a real b > a such that:

 $\mathsf{RTIME}(n^b)/1 \subsetneq \mathsf{RTIME}(n^a)/\log(n)^{1/2a}$

• The significance of proving lower bounds for this computational model is related to the famous "**P** vs **NP**" problem, since:

$$\mathsf{NP} \smallsetminus \mathsf{P}_{/\mathsf{poly}} \neq \emptyset \Rightarrow \mathsf{P} \neq \mathsf{NP}$$

- But...after decades of efforts, The best lower bound for an **NP** language is 5n o(n), proved very recently (2005).
- There are better lower bounds for some special cases, i.e. some restricted classes of circuits, such as: bounded depth circuits, monotone circuits, and bounded depth circuits with "counting" gates.

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000	00	00000	
Circuit Lower Bounds			

Definition

Let $PAR : \{0,1\}^n \to \{0,1\}$ be the *parity* function, which outputs the modulo 2 sum of an *n*-bit input. That is:

$$PAR(x_1,...,x_n) \equiv \sum_{i=1}^n x_i \pmod{2}$$

Theorem

For all constant d, PAR has no polynomial-size circuit of depth d.

 The above result (improved by Håstad and Yao) gives a relatively tight lower bound of exp (Ω(n^{1/(d-1)})), on the size of n-input PAR circuits of depth d.

300lean Circuits 2000	OO	OOOOO	The Quest for Lower Bour
Circuit Lower Bounds			
Definition			
For $x, y \in$ also 1 in y $f(x) \leq f(y)$	$\{0,1\}^n$, we denote f . A function $f : \{0, y\}$ for every $x \leq y$.	$x \preceq y$ if every bit t $1\}^n \rightarrow \{0,1\}$ is mo	hat is 1 in <i>x</i> is <i>onotone</i> if
Definition			
A Boolean gates, and monotone	Circuit is <i>monotone</i> no NOT gates. Suc functions.	e if it contains only ch a circuit can only	YAND and OR y compute
Theorem (Monotone Circuit L	ower Bound for CL	IQUE)

Denote by $CLIQUE_{k,n} : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph G outputs 1 iff G contains an k-clique. There exists some constant $\epsilon > 0$ such that for every $k \leq n^{1/4}$, there is no monotone circuit of size less than $2^{\epsilon\sqrt{k}}$ that computes $CLIQUE_{k,n}$.

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
			000000
Circuit Lower Bounds			

- So, we proved a significant lower bound $(2^{\Omega(n^{1/8})})$
- The significance of the above theorem lies on the fact that there was some alleged connection between monotone and non-monotone circuit complexity (e.g. that they would be polynomially related). Unfortunately, Éva Tardos proved in 1988 that the gap between the two complexities is exponential.
- Where is the problem finally? Today, we know that a result for a lower bound using such techniques would imply the inversion of strong one-way functions:

Boolean Circuits	TMs taking advice	Basic Properties	The Quest for Lower Bounds
0000		00000	○○○○●○
Epilogue: What's Wrong?			

*Natural Proofs [Razborov, Rudich 1994]

Definition

Let $\ensuremath{\mathcal{P}}$ be the predicate:

"A Boolean function $f:\{0,1\}^n\to \{0,1\}$ doesn't have n^c-sized circuits for some $c\ge 1.$ "

 $\mathcal{P}(f) = 0, \forall f \in \mathsf{SIZE}(n^c)$ for a $c \ge 1$. We call this n^c -usefulness.

A predicate \mathcal{P} is natural if:

- There is an algorithm $M \in \mathbf{E}$ such that for a function $g : \{0,1\}^n \to \{0,1\}$: $M(g) = \mathcal{P}(g)$.
- For a random function g: $\Pr[\mathcal{P}(g) = 1] \geq \frac{1}{n}$

Theorem

If strong one-way functions exist, then there exists a constant $c \in \mathbb{N}$ such that there is no n^c -useful natural predicate \mathcal{P} .

Boolean Circuits 0000	TMs taking advice 00	Basic Properties 00000	The Quest for Lower Bounds ○○○○○●
Epilogue: What's Wrong?			
References			

- Sanjeev Arora and Boaz Barak, *Computational Complexity: A Modern Approach*, Cambridge University Press, 2009
- Ding-Zhu Du and Ker-I Ko, *Theory of Computational Complexity*, Wiley-Interscience, 2000
- Oded Goldreich, *Computational Complexity: A Conceptual Perspective*, Cambridge University Press, 1st edition, 2008
- *Ingo Wegener, *The Complexity of Boolean Functions*, John Wiley and Sons Ltd, and B. G. Teubner, Stuttgart, 1987
- Lance Fortnow, Rahul Santhanam, *Time Hierarchies: A Survey*, Electronic Colloquium on Computational Complexity, 2007 http://eccc.hpi-web.de/report/2007/004/

Thank You!