Non-Uniform Complexity

A. Antonopoulos

Theoretical Computer Science |

Computation and Reasoning Laboratory
National Technical University of Athens

January 2012

Boolean Circuits
®000

Definitions

Boolean Circuits

@ A Boolean Circuit is a natural model of nonuniform
computation, a generalization of hardware computational
methods.

@ A non-uniform computational model allows us to use a
different “algorithm” to be used for every input size, in
contrast to the standard (or uniform) Turing Machine model,
where the same T.M. is used on (infinitely many) input sizes.

@ Each circuit can be used for a fixed input size, which limits or
model.

Boolean Circuits
0e00

Definitions

Definition (Boolean circuits)

For every n € N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.
@ All nonsource vertices are called gates and are labeled with one of A
(and), V (or) or = (not).
@ The vertices labeled with A and V have fan-in (i.e. number or
incoming edges) 2.
@ The vertices labeled with = have fan-in 1.
@ The size of C, denoted by |C|, is the number of vertices in it.

@ For every vertex v of C, we assign a value as follows: for some input
x € {0,1}", if v is the i-th input vertex then val(v) = x;, and
otherwise val(v) is defined recursively by applying v's logical
operation on the values of the vertices connected to v.

@ The output C(x) is the value of the output vertex.

@ The depth of C is the length of the longest directed path from an
input node to the output node.

Boolean Circuits
coeo

Definitions

@ To overcome the fixed input length size, we need to allow
families (or sequences) of circuits to be used:

Definition

Let T: N — N be a function. A T(n)-size circuit family is a
sequence {Cp}pen of Boolean circuits, where C, has n inputs and
a single output, and its size |C,| < T(n) for every n.

@ These infinite families of circuits are defined arbitrarily: There
is no pre-defined connection between the circuits, and also we
haven't any "guarantee” that we can construct them
efficiently.

@ Like each new computational model, we can define a
complexity class on it by imposing some restriction on a
complexity measure:

Boolean Circuits
ocooe

Definitions

We say that a language L is in SIZE(T(n)) if there is a T(n)-size
circuit family {Cy}nen, such that Vx € {0,1}":

xele C(x)=1

P poly is the class of languages that are decidable by polynomial
size circuits families. That is,

P ooty =) SIZE(n)

ceN

Theorem (Nonuniform Hierarchy Theorem)

For every functions T, T’ : N — N with 2 > T’(n) > 10T(n) > n,

SIZE(T(n)) C SIZE(T'(n))

TMs taking advice
[1]

Definition

Turing Machines that take advice

Definition
Let T, : N — N. The class of languages decidable by T(n)-time
Turing Machines with a(n) bits of advice, denoted

DTIME (T (n)/a(n))

containts every language L such that there exists a secuence
{an}nen of strings, with a, € {0,1}2(") and a Turing Machine M
satisfying:

x€Le M(x,a,) =1

for every x € {0,1}", where on input (x, a,) the machine M runs
for at most O(T(n)) steps.

TMs taking advice
oe

Definition

Turing Machines that take advice

Theorem (Alternative Definition of P/,)

P/ooly = () DTIME(n/n%)
c,deN

TMs taking advice
oe

Definition

Turing Machines that take advice

Theorem (Alternative Definition of P/,)

P/ooly = () DTIME(n/n%)
c,deN

Proof: (C) Let L € Ppqy. Then, 3{Cy}nen : Cx = L(x).
We can use C, 's encoding as an advice string for each n.

TMs taking advice
oe

Definition

Turing Machines that take advice

Theorem (Alternative Definition of P/,)

P/ooly = () DTIME(n/n%)
c,deN

Proof: (C) Let L € Ppqy. Then, 3{Cy}nen : Cx = L(x).

We can use C, 's encoding as an advice string for each n.

(D) Let L € DTIME(n¢)/n9. Then, since CVP is P-complete, we
construct for every n a circuit D, such that, for

x € {0,1}", a, € {0,1}2("):

Dn(x,an) = M(x, an)

Then, let Cp(x) = Dn(x, an) (We hard-wire the advice string!)
Since a(n) = n9, the circuits have polynomial size. [J.

Basic Properties
[Jelelelo)

Relationship among Complexity Classes

PG P/poly

@ For “C", recall that CVP is P-complete.
@ But why proper inclusion?
o Consider the following language:

U = {1"|n’s binary expression encodes a pair < M,x > s.t. M(x) |}

o It is easy to see that U € P 4, but....

Theorem (Karp-Lipton Theorem)
IFNP C P /po1y, then PH = X5

Theorem (Meyer's Theorem)

IFEXP C P /poly, then EXP = 5.

Basic Properties
0®000

Relationship among Complexity Classes

Uniform Families of Circuits

@ We saw that P /4, contains an undecidable language.

@ The root of this problem lies in the “weak” definition of such
families, since it suffices that 3 a circuit family for L.

@ We haven't a way (or an algorithm) to construct such a family.

@ So, may be useful to restric or attention to families we can
construct efficiently:

Theorem (P-Uniform Families)

A circuit family {Cp}nen is P-uniform if there is a polynomial-time
T.M. that on input 1" outputs the description of the circuit C,.

e But...

A language L is computable by a P-uniform circuit family iff L € P.

Basic Properties
00®00

Relationship among Complexity Classes

BPP C P /py

Proof: Recall that if L € BPP, then 3 PTM M such that:

Prre{o,l}po/y(n) [M(x,r) # L(x)] <27"
Then, taking the union bound:

Prigx € {0,1}": M(x,r) # L(x)] =Pr | | M(x,r)# L(x)| <
x€{0,1}n
< > PrM) # LX) <2442 =1
xe{0,1}n
So, 3r, € {0,1}PM(") st ¥x{0,1}": M(x,r) = L(x).
Using {r,}nen as advice string, we have the non-uniform machine.

0

Basic Properties
000®0

Relationship among Complexity Classes

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function f : {0,1}" — {0,1}, we define the
(circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C(x) = f(x),Vx € {0,1}").

Definition (Average-Case Hardness)

The minimum S such that there is a circuit C of size S such that:

Pr[C(x) = f(x)] > % + é

is called the (average-case) hardness of f.

Basic Properties
ooo0e

Relationship among Complexity Classes

Hierarchies for Semantic Classes with advice

@ We have argued why we can't obtain Hierarchies for semantic
measures using classical diagonalization techniques. But using
small advice we can have the following results:

Theorem ([Bar02], [GST04])
Fora,be R, withl < a< b:

BPTIME(n?)/1 ¢ BPTIME(n®)/1

Theorem ([FSTO05])
For any 1 < a € R there is a real b > a such that:

RTIME(n”)/1 ¢ RTIME(n?)/ log(n)*/?2

N

The Quest for Lower Bounds
®000

Circuit Lower Bounds

Circuit Lower Bounds

@ The significance of proving lower bounds for this
computational model is related to the famous "P vs NP"
problem, since:

NP < P oy # 0 = P # NP

@ But...after decades of efforts, The best lower bound for an
NP language is 5n — o(n), proved very recently (2005).

@ There are better lower bounds for some special cases, i.e.
some restricted classes of circuits, such as: bounded depth
circuits, monotone circuits, and bounded depth circuits with
"counting” gates.

The Quest for Lower Bounds
oeo00

Circuit Lower Bounds

Let PAR : {0,1}" — {0,1} be the parity function, which outputs
the modulo 2 sum of an n-bit input. That is:

n

PAR(x1, ..., Xp) = Zx,-(mod 2)
i=1

’

For all constant d, PAR has no polynomial-size circuit of depth d.

@ The above result (improved by Hastad and Yao) gives a
relatively tight lower bound of exp (Q(n'/(?=1)), on the size
of n-input PAR circuits of depth d.

The Quest for Lower Bounds
ocoeo

Circuit Lower Bounds

Definition

For x,y € {0,1}", we denote x =< y if every bit that is 1 in x is
also 1 in y. A function f : {0,1}" — {0,1} is monotone if
f(x) < f(y) for every x < y.

Definition

A Boolean Circuit is monotone if it contains only AND and OR
gates, and no NOT gates. Such a circuit can only compute
monotone functions.

Theorem (Monotone Circuit Lower Bound for CLIQUE)

Denote by CLIQUEy ,, : {0, 1}(2) — {0, 1} the function that on
input an adjacency matrix of an n-vertex graph G outputs 1 iff G
contains an k-clique. There exists some constant € > 0 such that
for every k < n/*, there is no monotone circuit of size less than
2eVk that computes CLIQUE .

The Quest for Lower Bounds
oooe

Circuit Lower Bounds

@ So, we proved a significant lower bound (29(”1/8))

@ The significance of the above theorem lies on the fact that
there was some alleged connection between monotone and
non-monotone circuit complexity (e.g. that they would be
polynomially related). Unfortunately, Eva Tardos proved in
1988 that the gap between the two complexities is
exponential.

@ Where is the problem finally?
Today, we know that a result for a lower bound using such
techniques would imply the inversion of strong one-way
functions:

The Quest for Lower Bounds
°0

Epilogue: What's Wrong?

*Natural Proofs [Razborov, Rudich 1994]

Let P be the predicate:

"A Boolean function f : {0,1}" — {0, 1} doesn’t have n¢-sized
circuits for some ¢ > 1."

P(f) = 0,Vf € SIZE(n®) for a ¢ > 1. We call this n®-usefulness.

A predicate P is natural if:

@ There is an algorithm M € E such that for a function
g:{0,1}" = {0,1}: M(g) = P(g).
@ For a random function g: Pr[P(g) =1] > 1

Theorem

If strong one-way functions exist, then there exists a constant ¢ € N such
that there is no n°-useful natural predicate P.

The Quest for Lower Bounds
oce

Epilogue: What's Wrong?

References

@ Sanjeev Arora and Boaz Barak, Computational Complexity: A
Modern Approach, Cambridge University Press, 2009

@ Ding-Zhu Du and Ker-1 Ko, Theory of Computational Complexity,
Wiley-Interscience, 2000

@ Oded Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 1st edition, 2008

@ *Ingo Wegener, The Complexity of Boolean Functions, John Wiley
and Sons Ltd, and B. G. Teubner, Stuttgart, 1987

@ Lance Fortnow, Rahul Santhanam, Time Hierarchies: A Survey,
Electronic Colloquium on Computational Complexity, 2007
http://eccc.hpi-web.de/report/2007/004/

Thank You!

	Boolean Circuits
	Definitions

	TMs taking advice
	Definition

	Basic Properties
	Relationship among Complexity Classes

	The Quest for Lower Bounds
	Circuit Lower Bounds
	Epilogue: What's Wrong?

